Electron Transfer and Ligand Addition to Atomic Mercury Cations in the Gas Phase: Kinetic and Equilibrium Studies at 295 K

Xiang Zhao, Eric Flaim, Lise Huynh, Michael J. Y. Jarvis, Ping Cheng, Vitali V. Lavrov, Voislav Blagojevic, Gregory K. Koyanagi, and Diethard K. Bohme*

Department of Chemistry, Centre for Research in Mass Spectrometry and Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada M3J 1P3

Received February 3, 2006

Results are reported for experimental measurements of the room-temperature chemical reactions between ground-state Hg+ ions and 16 important environmental and biological gases: SF6, CO, CO2, N2O, D2O, CH4, CH2F, O2, CH3Cl, OCS, CS2, NH3, C6F6, NO2, NO+, and C6H6. The inductively coupled plasma/selected-ion flow tube tandem mass spectrometer used for these measurements has provided both rate and equilibrium constants. Efficient electron transfer (>19%) is observed with CS2, NH3, C6F6, NO2, NO+, and C6H6, molecular addition occurs with D2O, CH4, CH2F, CH3Cl, and OCS, and SF6, CO, CO2, N2O, and O2 showed no measurable reactivity with Hg+. Theory is used to explore the stabilities and structures of both the observed and unobserved molecular adducts of Hg+, and reasonable agreement is obtained with experimental observations, given the uncertainties of the theory and experiments. A correlation is reported between the Hg+ and proton affinities of the ligands investigated. Solvation of Hg+ with formic acid was observed to increase the rate of electron transfer from NO+ by more than 20%.

1. Introduction

Studies of reactions of mercury cations in the gas phase date back to at least 1967 when efforts were made to develop a mercury-plasma bridge neutralizer to use with a mercury thruster for the electric propulsion of ion engines into space.1–3 The relative merits of Hg and Cs as neutralizers were evaluated with measurements of the electron-transfer reaction of Hg+ with Cs at high energies (1–15 keV). Thermal reactions of Hg+ with molecules appear not to have been investigated until 1976 during the early days of ion cyclotron resonance (ICR) mass spectrometry when Allison and Ridge reported the formation of Hgl+, rather than the methyl-mercury cation HgCH3+, from the reaction of Hg+ with CH4.4 Hg+ and HgBr+ cations were generated in a low-voltage DC discharge containing CH3HgBr and used for chemiluminescent studies of these cations.5 Further qualitative studies, this time using FT-ICR, were reported in 1994 for reactions of Hg+ produced by laser ablation of red mercury(II) sulfide.6 Reactions were observed with benzene and several substituted benzenes, several arylthiols, and two butylthiols, and these were dominated by electron transfer. An interesting near-resonant electron-transfer reaction with H2S also was observed. Electron transfer to Hg+ also has been reported with dimethyl peroxide; here Hg+ was produced by laser ablation of an alloy of tin, silver, and mercury.7 Finally, the electron transfer from Ar or Kr to doubly charged Hg2+ cations7 and the mobility of these cations in helium have been investigated at low collision energies using the flow drift tube technique.8,9

Overall, reported studies of the chemistry of bare Hg+ have been surprisingly sparse, and apparently, no quantitative information was available on the room-temperature kinetics of this chemistry until we began to employ our recently constructed ICP/SIFT tandem mass spectrometer. We reported the room-temperature kinetics of the reactions of Hg+ (5d106s1) with N2O, O2, and C6F6 in early applications of

2. Experimental Section

The kinetic and equilibrium measurements were taken with an inductively coupled plasma-selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The SIFT apparatus and ICP ion source, as well as the ICP/SIFT interface, have been described previously. The ICP/SIFT interface, have been described previously.14-17 Hg ions were generated in the ICP source by spraying a dilute solution of Hg in hydrochloric acid and water. Hg ions emerging from the ICP source were mass analyzed with a quadropole mass filter and injected into a stainless steel flow tube that is continuously flushed with helium buffer gas at a steady-state pressure of 0.35 ± 0.01 Torr and 295 ± 2 K. At the operating temperature of the argon plasma estimated to be 5500 K, the Hg ions are produced primarily (99.97%) in the 2S (5d10 6s) ground electronic state. The helium buffer gas in the flow tube acts to thermalize the kinetic energy of the Hg ions and to monitor the intensities of reactant and product ions as a function of the flow of the neutral reagent. Rate coefficients for the primary reactions of all ions present in the system are determined with an uncertainty of ±30% from the rate of decay of the reactant ion intensity using pseudo-first-order kinetics. Higher-order rate coefficients are obtained by fitting the experimental data to the solutions of the system of differential equations for sequential reactions.14,15

Equilibrium constants for ligation reactions were determined at the fixed reaction time (9.4 ms) of our experiment from a plot of the ion signal ratio or ion concentration ratio, [Hg+L]/[Hg+], against the flow of ligand L when this plot becomes linear and mass discrimination is taken into account. Only lower limits to the equilibrium constants are accessible when equilibrium is not achieved in the reaction region either because of insufficient time or because of a fast sequential addition to form a more highly ligated cluster which prevents sufficient back reaction. Equilibrium is not achieved when the ion signal ratio plot does not achieve linearity in the reactant flow rate of the experiment (the last point of the curved plot will then provide a lower limit). Alternatively, further reaction of the product cluster may prevent the achievement of linearity and cause downward curvature before the achievement of linearity (in this case, the tangent to the onset of curvature provides a lower limit to K). Equilibrium also is not achieved for reactions with very large equilibrium constants or with reagent vapors such as water vapor that cannot be added in large enough amounts. Breakup of the adduct ion in the sampling process also will lead to lower limits for the true equilibrium constant. However, this latter effect will be most pronounced for the weakest bonds and should not be an issue for adduct ions with binding free energies ≥5 kcal mol⁻¹.

3. Theoretical Section

All quantum chemistry calculations in this paper are performed with the B3LYP hybrid density functional method16,19 and achieved with the GAUSSIAN98 suite of programs.20 In all cases, the thermochemistry calculated here is corrected for zero-point energy (ZPE) effects. The 6-311+G(d,p) basis set21,22 is used for all of the elements except Hg, for which the LANLZ2DZ23-25 basis set was used. All stationary points were characterized by harmonic vibrational frequency calculations and these established that all the

Reagent gases and vapors were introduced in the flow tube through an inlet tube. Some were added as solutions in helium (10—20%). All were of high purity (>99%).

Further downstream, a second quadropole mass filter was used to monitor the intensities of reactant and product ions as a function of the flow of the neutral reagent. Rate coefficients for the primary reactions of all ions present in the system are determined with an uncertainty of ±30% from the rate of decay of the reactant ion intensity using pseudo-first-order kinetics. Higher-order rate coefficients are obtained by fitting the experimental data to the solutions of the system of differential equations for sequential reactions.14,15

Equilibrium constants for ligation reactions were determined at the fixed reaction time (9.4 ms) of our experiment from a plot of the ion signal ratio or ion concentration ratio, [Hg+L]/[Hg+], against the flow of ligand L when this plot becomes linear and mass discrimination is taken into account. Only lower limits to the equilibrium constants are accessible when equilibrium is not achieved in the reaction region either because of insufficient time or because of a fast sequential addition to form a more highly ligated cluster which prevents sufficient back reaction. Equilibrium is not achieved when the ion signal ratio plot does not achieve linearity in the reactant flow rate of the experiment (the last point of the curved plot will then provide a lower limit). Alternatively, further reaction of the product cluster may prevent the achievement of linearity and cause downward curvature before the achievement of linearity (in this case, the tangent to the onset of curvature provides a lower limit to K). Equilibrium also is not achieved for reactions with very large equilibrium constants or with reagent vapors such as water vapor that cannot be added in large enough amounts. Breakup of the adduct ion in the sampling process also will lead to lower limits for the true equilibrium constant. However, this latter effect will be most pronounced for the weakest bonds and should not be an issue for adduct ions with binding free energies ≥5 kcal mol⁻¹.

terminal in all cases, under our operating conditions, except for Figures 1 and 2. The electron transfer was observed to be
rate coefficient was not measured.

The ligation reactions are react by ligand association, reaction 2, and five others (SF₅, (CS₂)₂)

4. Results and Discussion

4.1. Kinetic Results. Table 1 summarizes the effective bimolecular rate coefficients obtained for reactions of Hg⁺⁺ with 16 small molecules, both inorganic and organic. Six of these (CS₂, NH₃, C₆F₆, NO₂, NO, C₆H₆) react by electron transfer, reaction 1, five (D₂O, CH₄, CH₃F, CH₃Cl, OCS) react by ligand association, reaction 2, and five others (SF₅, CO, CO₂, N₂O, O₂) do not show any measurable product formation or reaction, k ≤ 5.0 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹, under our operating conditions. The ligation reactions are assumed to proceed by termolecular collisional stabilization, although the pressure dependence of the effective bimolecular rate coefficient was not measured.

\[
\text{Hg}^{++} + \text{molecule} \rightarrow \text{molecule}^{++} + \text{Hg} \quad (1)
\]

\[
\text{Hg}^{++} + \text{molecule} \rightarrow \text{Hg}^{++} (\text{molecule}) \quad (2)
\]

Representative data for reactions 1 and 2 are shown in Figures 1 and 2. The electron transfer was observed to be terminal in all cases, under our operating conditions, except for the electron transfer from CS₂ to Hg⁺⁺ which is followed by the association of CS₂⁺⁺ with CS₂ to form the dimer ion (CS₂)₂⁺⁺, as shown in Figure 1. The primary association reaction 2 was followed by a secondary association reaction in all cases except with methane.

Also included in Table 1 values for the reaction efficiencies. The reaction efficiency is taken to be equal to the ratio k/kc where k is the experimentally measured rate coefficient and kc is the capture or collision rate coefficient computed using the algorithm of the modified variational transition-state/classical trajectory theory developed by Su and Chesnavich.

4.2. Trends with Exothermicity. Table 1 includes values for the overall energy change for electron transfer, ∆IE, and these indicate that electron transfer to Hg⁺⁺ is exothermic only with six of the molecules investigated (CS₂, NH₃, C₆F₆, NO₂, NO⁺, and C₆H₆). The efficiencies for these electron transfers are generally ≥0.4 except with NO for which k/kc = 0.19. We have recently discussed the possible origin for the low observed efficiency of electron transfer from NO⁺ to Hg⁺⁺ in terms of the low Franck-Condon factor associated with the near-resonant ionization of NO.²⁷ The actual order in the magnitudes of the efficiencies of all the six electron-transfer reactions that were observed cannot be rationalized in a straightforward fashion. At thermal energies (E_cm ≪ 1 eV), neither the Franck-Condon model, energy resonance, nor statistical energy partitioning alone provides a general

\[
\Delta \text{IE} / \text{eV}^{a}
\]

<table>
<thead>
<tr>
<th>molecule</th>
<th>IE/eV</th>
<th>reaction</th>
<th>(k) (cm³ molecule⁻¹ s⁻¹)</th>
<th>(k/k_c)</th>
<th>∆IE/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF₅</td>
<td>15.3</td>
<td>Hg⁺⁺ + SF₅ → no reaction</td>
<td>(10^{-13})</td>
<td>1.5 × 10⁻⁴</td>
<td>4.9</td>
</tr>
<tr>
<td>CO</td>
<td>14.0</td>
<td>Hg⁺⁺ + CO → no reaction</td>
<td>(10^{-13})</td>
<td>1.5 × 10⁻⁴</td>
<td>3.6</td>
</tr>
<tr>
<td>CO₂</td>
<td>13.8</td>
<td>Hg⁺⁺ + CO₂ → no reaction</td>
<td>(5.0 \times 10^{-13})</td>
<td>7.0 × 10⁻⁴</td>
<td>3.4</td>
</tr>
<tr>
<td>N₂O</td>
<td>12.9</td>
<td>Hg⁺⁺ + N₂O → no reaction</td>
<td>(10^{-13})</td>
<td>1.4 × 10⁻⁴</td>
<td>2.5</td>
</tr>
<tr>
<td>D₂O</td>
<td>12.6</td>
<td>Hg⁺⁺ + D₂O → Hg⁺⁺(D₂O)</td>
<td>(8.0 \times 10^{-12})</td>
<td>3.9 × 10⁻³</td>
<td>2.2</td>
</tr>
<tr>
<td>CH₄</td>
<td>12.5</td>
<td>Hg⁺⁺ + CH₄ → Hg⁺⁺(CH₄)</td>
<td>(10^{-13})</td>
<td>5.0 × 10⁻⁵</td>
<td>2.1</td>
</tr>
<tr>
<td>CH₃F</td>
<td>12.4</td>
<td>Hg⁺⁺ + CH₃F → Hg⁺⁺(CH₃F)</td>
<td>(2.5 \times 10^{-12})</td>
<td>1.4 × 10⁻³</td>
<td>2.0</td>
</tr>
<tr>
<td>O₂⁺</td>
<td>12.1</td>
<td>Hg⁺⁺ + O₂⁺ → no reaction</td>
<td>(10^{-13})</td>
<td>1.9 × 10⁻⁴</td>
<td>1.7</td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>11.4</td>
<td>Hg⁺⁺ + CH₃Cl → Hg⁺⁺(CH₃Cl)</td>
<td>(4.0 \times 10^{-11})</td>
<td>0.024</td>
<td>1.0</td>
</tr>
<tr>
<td>OCS</td>
<td>11.2</td>
<td>Hg⁺⁺ + OCS → Hg⁺⁺(OCS)</td>
<td>(7.7 \times 10^{-12})</td>
<td>8.0 × 10⁻³</td>
<td>0.8</td>
</tr>
<tr>
<td>CS₂</td>
<td>10.1</td>
<td>Hg⁺⁺ + CS₂ → CS₂⁺⁺ + Hg</td>
<td>(9.3 \times 10^{-10})</td>
<td>1.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>NH₃</td>
<td>10.1</td>
<td>Hg⁺⁺ + NH₃ → NH₃⁺⁺ + Hg</td>
<td>(1.2 \times 10^{-9})</td>
<td>0.48</td>
<td>-0.3</td>
</tr>
<tr>
<td>C₆F₆</td>
<td>9.9</td>
<td>Hg⁺⁺ + C₆F₆ → C₆F₆⁺⁺ + Hg</td>
<td>(7.4 \times 10^{-10})</td>
<td>1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>NO₂⁺</td>
<td>9.6</td>
<td>Hg⁺⁺ + NO₂⁺ → NO₂⁺⁺ + Hg</td>
<td>(3.1 \times 10^{-10})</td>
<td>0.42</td>
<td>-0.8</td>
</tr>
<tr>
<td>NO⁺</td>
<td>9.3</td>
<td>Hg⁺⁺ + NO⁺ → NO⁺⁺ + Hg</td>
<td>(1.2 \times 10^{-10})</td>
<td>0.19</td>
<td>-1.1</td>
</tr>
<tr>
<td>C₆H₆</td>
<td>9.2</td>
<td>Hg⁺⁺ + C₆H₆ → C₆H₆⁺⁺ + Hg</td>
<td>(6.1 \times 10^{-10})</td>
<td>0.61</td>
<td>-1.1</td>
</tr>
</tbody>
</table>

a The reactions are listed in order of increasing exothermicity of electron transfer. b Taken from ref 13. c In units of cm³ molecule⁻¹ s⁻¹. The estimated uncertainty is ±30%. d k/k_c represents the reaction efficiency (see text). e ∆IE = IE(Molecule) − IE(Hg).

Figure 1. Ion profiles recorded for the reactions initiated by Hg⁺⁺ with carbon disulfide added into the flow tube flushed with helium buffer gas at 0.35 Torr and 295 K. The slight curvature in the data observed after a linear decay of almost 2 orders of magnitude is attributed to a small background.

Electron Transfer and Ligand Addition to Atomic Hg Cations

Figure 2. Ion profiles recorded for the reactions initiated by Hg$^+$ with methane added into the flow tube flushed with helium buffer gas at 0.35 Torr and 295 K.

Figure 3. Dependence of the apparent bimolecular efficiency for reactions of Hg$^+$ ions with various molecular ligands, L, on $\Delta E = IE(L) - IE(Hg)$. The ligands that transfer an electron to Hg$^+$ are labeled.

Figure 4. Ion signal ratio plots demonstrating the attainment of equilibrium for the association of methane and carbonyl sulfide to Hg$^+$ in helium buffer gas at 0.35 Torr and 295 K.

Table 2. Summary of Equilibrium Results for the Addition of Small Molecules to Hg$^+$ in He at 0.35 Torr and 295 K

<table>
<thead>
<tr>
<th>Equilibrium ligation</th>
<th>K^a</th>
<th>ΔG^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg$^+$+D$_2$O \leftrightarrow Hg$^+$[D$_2$O]</td>
<td>$\geq 5.1 \times 10^5$</td>
<td>≤ -7.7</td>
</tr>
<tr>
<td>Hg$^+$[D$_2$O] + D$_2$O \leftrightarrow Hg$^+$[D$_2$O]2</td>
<td>$\geq 1.4 \times 10^5$</td>
<td>≤ -7.0</td>
</tr>
<tr>
<td>Hg$^+$+CH$_3$F \leftrightarrow Hg$^+$[CH$_3$F]</td>
<td>9.7 $\times 10^3$</td>
<td>-5.4</td>
</tr>
<tr>
<td>Hg$^+$+CH$_3$F \leftrightarrow Hg$^+$[CH$_3$F]</td>
<td>$\geq 2.9 \times 10^5$</td>
<td>-7.4</td>
</tr>
<tr>
<td>Hg$^+$[CH$_3$F] + CH$_3$F \leftrightarrow Hg$^+$[CH$_3$F]2</td>
<td>2.3 $\times 10^4$</td>
<td>-5.9</td>
</tr>
<tr>
<td>Hg$^+$+CH$_3$Cl \leftrightarrow Hg$^+$[CH$_3$Cl]</td>
<td>$\geq 7.3 \times 10^6$</td>
<td>-9.3</td>
</tr>
<tr>
<td>Hg$^+$[CH$_3$Cl] + CH$_3$Cl \leftrightarrow Hg$^+$[CH$_3$Cl]2</td>
<td>2.1 $\times 10^6$</td>
<td>-8.5</td>
</tr>
<tr>
<td>Hg$^+$+OCS \leftrightarrow Hg$^+$[OCS]</td>
<td>1.9 $\times 10^5$</td>
<td>-7.2</td>
</tr>
</tbody>
</table>

a Standard state = 1 bar. The uncertainty is estimated to be $\pm 30\%$. b In units of kcal mol$^{-1}$. The uncertainty is estimated to be less than ± 2 kcal mol$^{-1}$.

Electron Transfer and Ligand Addition to Atomic Hg Cations

The efficiency for the apparent bimolecular reactions on ΔE.

4.3. Equilibrium Kinetics and Standard Free Energies of Ligation. Equilibrium kinetics were explored for the association reactions with the five ligands D$_2$O, CH$_4$, CH$_3$F, CH$_3$Cl, and OCS. The ion-signal ratio plots were nicely linear for the ligation reactions of Hg$^+$ with OCS and CH$_4$ (see Figure 4). Equilibrium also was well defined for the second additions of CH$_3$F and CH$_3$Cl. Table 2 lists the equilibrium constants that were measured. Also included in Table 2 are the standard free energies of ligation that were derived from $\Delta G^\circ = -RT \ln K$ at 295 K and these have values in the range from -5.4 to -9.3 kcal mol$^{-1}$.

The interaction of Hg$^+$ with methane appears as the weakest and that with CH$_3$Cl the strongest, although the relative position of D$_2$O is uncertain. When two additions are observed, as is the case with D$_2$O, CH$_3$F, and CH$_3$Cl, the second interaction appears to be weaker, except perhaps in the case of D$_2$O.

4.4. Solvated Electron Transfer. A few experiments were performed in which formic acid vapor was introduced upstream into the flow tube and the solvated ions Hg$^+$[HCOOH]1 were seen downstream. No reactions were observed with CO, CO$_2$, and O$_2$, $k < 1 \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$. However, two solvated electron-transfer...
understanding of the interactions between Hg
DFT calculations were performed in order to obtain a better
for Hg
1.2
k
\(\text{NO} \) added downstream into the flow tube flushed with helium buffer gas at 0.35 Torr and 295 K.

reactions, reactions 3 and 4, were observed with \(\text{NO} \) in the presence of the bare Hg\(^{++} \) ion reaction (see Figure 5).

\[
\begin{align*}
\text{Hg}^{++}(\text{HCOOH}) + \text{NO} &\rightarrow \text{NO}^{+}(\text{HCOOH}) + \text{Hg} \quad (3) \\
\text{Hg}^{++}(\text{HCOOH})_2 + \text{NO} &\rightarrow \text{NO}^{+}(\text{HCOOH})_2 + \text{Hg} \quad (4)
\end{align*}
\]

There is some uncertainty in the product distribution of reactions 3 and 4 since the formation of product ions less solvated than those indicated in each case cannot be completely ruled out, nor can the solvation of the NO\(^+ \) product with the HCOOH added to the flow tube. The rate coefficients derived for the loss of Hg\(^{++}(\text{HCOOH})\) and Hg\(^{++}(\text{HCOOH})_2\) are \(k_1 = 1.5 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) and \(k_2 = 1.6 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \). These results are interesting since the rate coefficients for electron transfer to the solvated Hg\(^{++}(\text{HCOOH})_2\) ions are larger than that for electron transfer to the nonsolvated, bare Hg\(^{++} \) for which \(k = 1.2 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \). Therefore, these experiments indicate that the rate coefficient for electron transfer increases with solvation. This is an interesting result since it runs counter to previous trends in the kinetics reported for other ion/molecule reactions with increasing solvation and may have to do with a favorable shift in energy resonance or the Franck–Condon factors in the ionization of NO.\(^{27,30}\)

4.5. Computed Structures for Ligated Hg\(^{++} \). Detailed DFT calculations were performed in order to obtain a better understanding of the interactions between Hg\(^{++} \) and various ligands investigated. Table 3 provides the calculated ligand geometries, Hg\(^{++} \) (ligand) geometries, Mulliken charges, frontier orbitals of the ligands, and the overlapping orbitals in Hg\(^{++} \)–ligand complexes. In all of these systems, except for Hg\(^{++}(\text{O}_2)\), the SOMO (singly occupied molecular orbital) is an antibonding orbital that is essentially an sp-hybridized

6s orbital largely on Hg\(^{++} \). In the case of Hg\(^{++}(\text{CH}_3\text{F})\), Hg\(^{++}(\text{SF}_6)\), and Hg\(^{++}(\text{CO}_2)\), orbital analysis shows that there is no other molecular orbital with significant overlap between the Hg\(^{++} \) orbital and the molecular orbitals of the ligands.

The orientation of Hg\(^{++} \) in these three complexes is controlled by the electrostatic interaction and the calculations show that \(\angle \text{HgFC}, \angle \text{HgFS}, \text{ and } \angle \text{HgOC} = 180° \). In the other Hg\(^{++} \)–ligand complexes, there is an overlapping HOMO-1 orbital, except for Hg\(^{++}(\text{O}_2)\) and Hg\(^{++}(\text{CH}_3\text{Cl})\) in which the overlapping orbitals are SOMO and HOMO-2, respectively (see Table 3). These overlapping orbitals control the orientation of Hg\(^{++} \) and thus determines the geometry of the Hg\(^{++} \)–ligand complex. The HOMO of CO is along the O–C bond, and it is mainly composed of 2s and 2p of C and a small fraction of 2p of O. This results in a higher overlapping in Hg\(^{++} \)–CO and lower overlapping in Hg\(^{++} \)–OC and thus a stronger bond in Hg\(^{++} \)–CO than that in Hg\(^{++} \)–OC. This is in line with the proton affinities of CO at C (142.0 kcal mol\(^{-1} \)) and O (101.9 kcal mol\(^{-1} \)).\(^{31}\) In Hg\(^{++} \)–O\(_2\) and Hg\(^{++} \)–N\(_2\)O, the 6s orbital of Hg\(^{++} \) overlaps with the \(\pi^* \)-like HOMO of O\(_2\) and N\(_2\)O and gives rise to bent structures for Hg\(^{++} \)–O\(_2\) (\(\angle \text{Hg–O–O} = 129° \)) and Hg\(^{++} \)–N\(_2\)O (\(\angle \text{Hg–O–N} = 140° \)). The spatially more extended p orbitals of S facilitate preferred interactions with the sulfur atom instead of the O atom in OCS. The overlapping of the 6s of Hg\(^{++} \) and the 3p of sulfur gives a bent Hg\(^{++} \)–SCO complex (\(\angle \text{Hg–S–C} = 101° \)). This is similar to the protonation of OCS.\(^{32,33}\)

The three frontier orbitals of CH\(_4\) have the same symmetry, as shown in Table 3. However, the attempt to find the Hg\(^{++} \)–CH\(_4\) with C\(_2v\) symmetry was unsuccessful. The stable Hg\(^{++} \)–CH\(_3\) has a C\(_{3v}\) geometry in which the 6s orbital of Hg\(^{++} \) overlaps with a hybrid orbital composed of the 2p orbital of C and the s orbitals of four H atoms. H\(_2\)O has a \(\pi \)-like HOMO, and this is not suitable for overlapping with 6s of Hg\(^{++} \). The orbital analysis of Hg\(^{++} \)–H\(_2\)O indicates that 6s of Hg\(^{++} \) overlaps with HOMO-1 of H\(_2\)O to form a planar Hg\(^{++} \)–H\(_2\)O complex. Cl (with its occupied p orbital) has a bigger atomic radius and lower electronegativity than F, and this facilitates donation of an electron to Hg\(^{++} \), formation of a SOMO, and side-on C–Cl bonding rather than end-on electrostatic bonding as is the case with CH\(_3\)F. In Hg\(^{++} \)–HCOOH, the 6s of Hg\(^{++} \) overlaps with the \(\pi^* \)-like HOMO of HCOOH to give a planar complex.

4.6. Computed Energetics for Ligation. The calculated values for \(\Delta H^o_2 \), \(\Delta H_{298}^o \), and \(\Delta G_{298}^o \) for the association reactions of Hg\(^{++} \) with different ligands are listed in Table 4. The interactions between Hg\(^{++} \) and the various ligands generally are weak. The calculated values of \(\Delta H_{298}^o \) and \(\Delta G_{298}^o \) for the first ligand addition are predicted to be in the range from \(-6.7 \) and \(-1.2 \) kcal mol\(^{-1} \), respectively, for Hg\(^{++} \)–(OC) to \(-28.4 \) and \(-21.7 \) kcal mol\(^{-1} \), respectively, for

![Figure 5. Ion profiles recorded for the reactions initiated by Hg\(^{++}(\text{HCOOH})_0,1,2 \text{ with HCOOH added upstream and NO added downstream into the flow tube flushed with helium buffer gas at } 0.35 \text{ Torr and } 295 \text{ K.}](image-url)
Hg$^+$(HCOOH). The values of ΔH_{298}° and ΔG_{298}° for the second ligand addition are in the range from -5.4 and 3.7 kcal mol$^{-1}$, respectively, for CH$_4$ to -17.0 and -10.3 kcal mol$^{-1}$, respectively, for D$_2$O. These computed results are in line with our experimental observations. There is agreement in the absolute values for methane, within experimental error.
but the experimental value of -7.2 ± 2 kcal mol$^{-1}$ for OCS is slightly lower than the predicted value of -11.2 kcal mol$^{-1}$.

Our failure to observe the first association products of CO, O$_2$, SF$_6$, CO$_2$, and N$_2$O, and the second association products of CH$_4$ and OCS can be explained by the low $\Delta G^{298\circ}$ predicted by theory for these association reactions. Weak bonding leads to low rates of ligation since the lifetime of the association intermediate decreases with decreasing bond strength33 and it also leads to a greater probability of breakup in the sampling. Hg$^{2+}$ (CH$_4$) appears to be an exception since it was observed to be formed even though the $\Delta G^{298\circ}$ for Hg$^{2+}$ (CH$_4$) formation is only -5.4 kcal mol$^{-1}$ and so is lower than that for CO, CO$_2$, and N$_2$O. However, Hg$^{2+}$ (CH$_4$) formation is kinetically more favorable since the larger number of degrees of freedom in CH$_4$ leads to a longer lifetime for the association intermediate.34

The strongest interaction predicted by theory is that between Hg$^{2+}$ and HCOOH in Hg$^{2+}$ (HCOOH), and this can be attributed to the bent HCOOH structure in which Hg$^{2+}$ interacts primarily with the HOMO of HCOOH and less so electrostatically with the hydroxyl oxygen. The strong interaction between Hg$^{2+}$ and H$_2$O in Hg$^{2+}$ (H$_2$O) can be attributed to the large overlap between the 6s orbital of Hg$^{2+}$ and the HOMO-1 of H$_2$O. The interaction between Hg$^{2+}$ and CH$_3$Cl in Hg$^{2+}$ (CH$_3$Cl) also is due to orbital overlapping and results in a lower $\Delta H^{298\circ}$ compared to that in Hg$^{2+}$ (H$_2$O). Only Coulombic interaction was seen in Hg$^{2+}$ (CH$_3$F), so that a lower $\Delta H^{298\circ}$ was obtained compared to that for Hg$^{2+}$ (CH$_3$Cl) and Hg$^{2+}$ (H$_2$O). The high ability of the sulfur 3p orbital in OCS to extend spatially results in effective overlap with the 6s orbital of Hg$^{2+}$. This leads to a higher interaction between OCS and Hg$^{2+}$ compared to those with O$_2$, N$_2$O, CO$_2$, and CO in which the oxygen, nitrogen, and carbon atoms have small atomic radii and a lower ability for spatial extension. It is easy to understand the lower interaction with CH$_4$, which has a symmetric geometry and no dipole moment. The lower $\Delta H^{298\circ}$ for the second association can be attributed to charge delocalization by the first ligand which reduces the electrostatic interaction compared to that with the bare charge-localized Hg$^{2+}$.

A plot of the calculated Hg$^{2+}$ affinity vs proton affinity is shown in Figure 6. There is an obvious correlation between the Hg$^{2+}$ affinity and the proton affinity, except with CH$_4$ and SF$_6$. The larger atomic radius of Hg$^{2+}$ prevents a close approach to the ligand and this, together with the lower total overlap with the diffuse 6s orbital of Hg$^{2+}$, contribute to a generally much lower Hg$^{2+}$ affinity compared to the proton affinity. Hg$^{2+}$ binds less tightly than H$^+$ since the 6s orbital of Hg$^{2+}$ is occupied and the 1s^0 of H$^+$ is not.

The exceptions for CH$_4$ and SF$_6$ can be attributed to differences in the nature of the bonding of Hg$^{2+}$ and H$^+$ with these two molecules. Previous experimental and theoretical studies$^{35-40}$ suggest that protonated CH$_4$ has a C$_s$ symmetry with a CH$_3$ tripod and a 3-center, 2-electron CH$_2$ structure. All of the five H atoms in CH$_3^+$ coordinate with the carbon atom. This results in a high proton affinity of 129.9 kcal mol$^{-1}$. Our computed structure for Hg$^{2+}$ (CH$_3$F) is quite different: the direct bonding of Hg$^{2+}$ to C is energetically unfavorable. All attempts at the B3LYP/6-311++G(d,p) level to find stable protonated SF$_6$, SF$_6$H$^+$, in which the proton interacts with one, two, or three fluorine atoms were not successful; SF$_5^+$FH was found to be the unique stable structure instead. However, the analogous SF$_5^+$FHg species was found not to exist; the complex Hg$^{2+}$ (SF$_6$) is the stable structure of the adduct of Hg$^{2+}$ and SF$_6$.

The absolute accuracy of the computed values of the ligation energies are difficult to assess because of the significant difference in the quality of the basis sets used in the calculations for Hg and the other elements. Theory and experiment agree on the standard free energy of ligation for the addition of the first ligand, at least within the uncertainties of, and limits to, the measurements, and the reduction in the free energy of ligation for the second ligand that was observed with D$_2$O, CH$_3$F, and CH$_3$Cl. The Hg$^{2+}$ affinities derived from values for ΔG° based on our equilibrium constant measurements and computed values for ΔS° are included in Figure 6 and provide a quick overview of the agreement between theory and experiment.

Also of interest is the theoretical prediction of the change in enthalpy for the electron transfer from NO with increasing HCOOH solvation, reactions 3 and 4. IE(Hg) is reduced by 1.22 and 1.85 eV with the addition of one and two molecules of HCOOH, respectively, if the interaction of Hg with HCOOH is neglected. $\Delta H^{298\circ}$ for electron-transfer shifts by -0.043 and -0.065 eV with the addition of one and two

(40) Huang, X.; McCoy Anne, B.; Bowman Joel, M.; Johnson Lindsay, M.; Savage, C.; Dong, F.; Nesbitt David, J. Science 2006, 311, 60–63.
molecules of HCOOH, respectively, to Hg$^{+}$ and NO$^+$, according to reactions 3 and 4.

5. Conclusions

The mercury radical cation, Hg$^{+}$, accepts an electron with high efficiency (>19%) in the gas phase at room temperature from molecules with ionization energies lower than its recombination energy. Molecules with higher ionization energies will associate with Hg$^{+}$ with affinities that correlate with proton affinities but are much smaller due primarily to the larger size and electron occupancy of the diffuse 6s^1 orbital of Hg$^{+}$. Methane and SF$_6$ are special cases in that these two molecules interact with a proton and Hg$^{+}$ in distinctly different ways. Theory indicates that the attractive interactions between Hg$^{+}$ and the CH$_3$F, SF$_6$, and CO$_2$ ligands are electrostatic in their corresponding adduct ions whereas the 6s orbital of Hg$^{+}$ overlaps with the frontier orbital (HOMO or HOMO-1) of the ligand in the other Hg$^{+}$-ligand complexes that were investigated. This overlap controls the orientation of Hg$^{+}$ and thus determines the geometry of the Hg$^{+}$-ligand complex. The ease of observation of ligated Hg$^{+}$ under our experimental operating conditions appears to be determined both by the strength of the interaction in the ligated complex and the number of

atoms in the ligand. Of the diatomic and triatomic ligands, only carbonyl sulfide and water were observed to add to Hg$^{+}$: these additions have computed ΔG°_{298}’s more negative than −11 kcal mol$^{-1}$. The five-atom ligands CH$_4$, CH$_3$F, CH$_3$Cl, and HCOOH were observed to add with computed ΔG°_{298}’s more negative than only −4 kcal mol$^{-1}$. SF$_6$ was not observed to add and this addition has the lowest ΔG°_{298} of −3.3 kcal mol$^{-1}$. Hg$^{+}$-(ligand)$_2$ formation was observed with D$_2$O, CH$_3$F, CH$_3$Cl, and HCOOH with computed ΔG°_{298}’s more negative than only −4 kcal mol$^{-1}$. The experimental values, or limiting values, of ΔG°_{298} deduced from measurements of equilibrium constants is reproduced by the calculations.

Acknowledgment. Continued financial support from the Natural Sciences and Engineering Research Council of Canada is greatly appreciated. Also, we acknowledge support from the National Research Council, the Natural Science and Engineering Research Council and MDS SCIEX in the form of a Research Partnership grant. As holder of a Canada Research Chair in Physical Chemistry, Diethard K. Bohme thanks the Canada Research Chair Program for its contributions to this research.

IC060195X